

Clinical relevance of human cancer xenografts as a tool for preclinical assessment: example of in-vivo evaluation of topotecan-based chemotherapy in a panel of human small-cell lung cancer xenografts

Fariba Némati^a, Catherine Daniel^b, Francisco Arvelo^{a,e},
 Marie-Emmanuelle Legrier^a, Benoît Froget^a, Alain Livartowski^b,
 Franck Assayag^a, Yveline Bourgeois^{a,d}, Marie-France Poupon^a
 and Didier Decaudin^{a,c}

Prediction of human tumor response based on preclinical data could reduce the failure rates of subsequent new anticancer drugs clinical development. Human small-cell lung carcinomas (SCLC) are characterized by high initial sensitivity to chemotherapy but a low median survival time because of drug resistance. The aim of this study was to evaluate the therapeutic relevance of a panel of human SCLC xenografts established in our laboratory using one compromising drug in SCLC, topotecan (TPT). Six SCLC xenografts derived from six patients were used: three were sensitive to a combination of etoposide (VP16), cisplatin (CDDP), and ifosfamide (IFO), and three were resistant, as published earlier. Growth inhibition was greater than 84% for five xenografts at doses of 1–2 mg/kg/day. TPT was combined with IFO, etoposide (VP16), and CDDP. IFO improved the efficacy of TPT in three of the five xenografts and complete responses were obtained even with the less TPT-sensitive xenograft. VP16 increased the efficacy of two of four xenografts and complete responses were obtained. The combination of TPT and CDDP did not improve TPT responses for any of the xenografts tested. Semiquantitative reverse transcriptase-PCR of genes involved in drug response, such as topoisomerase I,

topoisomerase II α , multidrug resistance 1 (MDR1), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), and glutathione S-transferase π (GST π), did not explain the variability in drug sensitivity between SCLC xenografts. In conclusion, these preclinical data mirror those from published clinical studies suggesting that our panel of SCLC xenografts represents a useful tool for preclinical assessment of new treatments. *Anti-Cancer Drugs* 21:25–32 © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Anti-Cancer Drugs 2010, 21:25–32

Keywords: small-cell lung cancer, topotecan, xenografts

^aPreclinical Investigation Laboratory, Department of Translational Research, Departments of ^bClinical Oncology, ^cClinical Hematology, Institut Curie, Paris, ^dDevelopmental Genetics of Melanocytes, UMR 146 CNRS-Institut Curie, Centre Universitaire, Orsay, France and ^eLaboratorio de Cultivo de Tejidos, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela

Correspondence to Dr Didier Decaudin, MD, PhD, Laboratoire d'Investigation Pré-Clinique/Service d'Hématologie Clinique, Institut Curie, 26 rue d'Ulm, 75248, Paris Cedex 05, France
 Tel: +33 1 44 32 46 90; fax: +33 1 53 10 40 11;
 e-mail: didier.decaudin@curie.net

Received 29 April 2009 Revised form accepted 24 June 2009

Introduction

Human small-cell lung carcinoma (SCLC), accounting for approximately 15–20% of all lung cancers, is an aggressive tumor with a high propensity for early regional and distant metastases. Chemotherapy is the primary treatment option for patients with SCLC, leading to a 5-year survival of approximately 20% in limited disease (LD), and less than 5% in extensive disease (ED). Although the initial tumor response rate to chemotherapy is very high (up to 96% for LD and up to 65% for ED), SCLC relapses after approximately 4 months in ED and 12 months in LD [1,2]. Although combinations of cyclophosphamide, adriamycin, and vincristine (CAV) or cyclophosphamide, adriamycin, and etoposide (CAE) have been widely used, cisplatin or carboplatin in combination with etoposide is now considered to be the standard first-line treatment of SCLC [3].

Topotecan (Hycamtin, TPT) is currently approved for the treatment of patients with SCLC who have failed or relapsed after first-line chemotherapy and who are not candidates for reinduction treatment. TPT, a water-soluble analog of camptothecin, belongs to the family of cytotoxic agents that inhibit topoisomerase I (Topo I). The main role of Topo I is relaxation of DNA, essential for transcription and replication processes. Topo I inhibitors reversibly stabilize the Topo I enzymatic complex and cleave DNA, leading to the formation of cleavage complexes that interfere with replication forks. The ensuing arrest of replication forks is accompanied by generation of permanent double-strand breaks that are thought to be responsible for the antiproliferative properties of TPT [4–7]. The cytotoxicity of anti-Topo I is therefore S-phase-specific, supporting prolonged therapeutic exposure. Moreover, TPT has been shown to be a

potent inhibitor of HIF-1 α and HIF-2 α subunits leading to decreased vascular endothelial growth factor expression and antiangiogenic activity [8–11].

The clinical profile of TPT in SCLC was established in several phase II studies [12–15], and was confirmed in randomized phase III trials [16–18]. Owing to the poor outcome of the disease and chemotherapy-induced toxicity, particularly with cisplatin-based regimens [19], the management of patients with initial or relapsed SCLC therefore remains challenging. To select the most active molecules, preclinical investigation of new anti-tumor compounds is an important step in the process of drug development before their clinical use. The choice of preclinical tumor models used to evaluate new compounds is therefore a crucial step to obtain comparable results between preclinical assessments and human clinical trials. The aims of this study were therefore to evaluate the therapeutic relevance of a panel of human SCLC xenografts and determine the tumor molecular profile according to genes involved in the response to TPT-based chemotherapy. This study reports the efficacy of TPT administered alone or in combination with chemotherapeutic drugs, such as etoposide, ifosfamide, and cisplatin, and discusses the relevance of these preclinical results in relation to published clinical data.

Materials and methods

Small-cell lung carcinoma xenografts and in-vivo tumor growth

Tumor specimens were obtained from patients during surgical resection with their consent. Tumor samples were established as xenografts by subcutaneous implantation of a tumor fragment into the scapular area of nude mice and sequentially transplanted. For experimental therapeutic trials, 6- to 10-week-old female mice received a subcutaneous graft of tumor fragments with a volume of approximately 15 mm³. Tumors appeared at the graft site 2–5 weeks later. Mice bearing tumors with a volume of 60–400 mm³ were individually identified and randomly assigned to the control or treatment group (four to eight animals per group, as detailed in the tables and legends of figures) and treatment started on day 1. Animals with tumor volumes exceeding this range were excluded. Mice were weighed weekly. Tumor-bearing mice were killed when their tumor volume reached 2500 mm³. Tumor volumes were calculated by measuring two perpendicular diameters using a caliper. Each tumor volume (V) was calculated according to the following formula: $V = (\alpha \times b^2)/2$, where α and b are the largest and smallest perpendicular tumor diameters. Relative tumor volumes (RTVs) were calculated by the formula: $RTV = (V_x/V_1)$, where V_x is the tumor volume on day x and V_1 is the tumor volume at initiation of therapy (day 1). Growth curves were obtained by plotting median RTV values on the y -axis against time (expressed as days after initiation of therapy). Antitumor activity was evaluated according to

three criteria: (i) tumor growth inhibition (TGI) calculated as $100 - [(RTV_t/RTV_c) \times 100]$, where RTV_t was calculated for individual tumors and RTV_c was the mean RTV in the control group at a given time, (ii) growth delay index (GDI) calculated as the median growth delay in the treated group divided by the median growth delay in the control group, with each individual growth delay calculated as the time, in days, required for the individual tumor to reach a five-fold increase in volume, as published earlier [20], and (iii) complete regression (CR) rate defined as the absence of any palpable nodule at the graft site; the duration of CR was also recorded. The statistical significance of observed differences between individual RTVs for treated mice and control groups was calculated by a paired Student's *t*-test.

For in-vivo experiments, Swiss nu/nu female mice were bred in the animal facilities of Institut Curie, Paris, France. Animals were maintained under specific pathogen-free conditions. Animal care and housing complied with institutional guidelines of the French Ethical Committee (Ministère de l'Agriculture et de la Forêt, Direction de la Santé et de la Protection Animale, Paris, France), under the supervision of authorized investigators.

Drug formulation and administration

TPT (a gift from GlaxoSmithKline, Nanterre, France) was diluted in 0.9% sodium chloride solution and administered orally or intraperitoneally (i.p.) in a 0.2 ml volume to tumor-bearing mice on days 1–5. Different daily doses were tested from 0.5 to 2.5 mg/kg per day. The doses of etoposide, ifosfamide, and cisplatin have been reported previously [21]. Etoposide (VP16, Vepeside, Sandoz, France) was diluted in 0.9% sodium chloride solution and administered by i.p. injection in a volume of 0.2 ml to tumor-bearing mice on days 1–3 at a dosage of 12 mg/kg/day. Ifosfamide (Holoxan, Asta Medica, Bordeaux, France) was diluted in 0.9% sodium chloride solution and administered by i.p. injection in a volume of 0.2 ml to tumor-bearing mice on days 1–3 at a dosage of 90 mg/kg/day. Cisplatin (CDDP, Cisplatyl, Roger Bellon, France) was reconstituted in water and diluted in 0.9% sodium chloride solution and administered by i.p. injection in a volume of 0.2 ml volume to tumor-bearing mice on day 1 at a dosage of 6 mg/kg/day. All drugs were extemporaneously prepared. In tests of drug combinations, each drug was injected separately to the animals. Mice in the control groups received 0.2 ml of the drug-formulating vehicle with the same dose schedule as treated animals.

Determination of gene expression

The tumor expression of various genes involved in drug resistance was evaluated by reverse transcriptase (RT)-PCR methods. These genes included multidrug resistance 1 (MDR1), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione

S-transferase π (GST π), Topo I, and Topo II α . Isolation of total RNA, RT-PCR conditions, and primer sequences, except for Topo I, have been described earlier [21]. The primer sequences for Topo I were as follows: S: 5'-AAA AGT CCA AGC ATA GCA ACA G-3'; AS: 5'-AGG AAC AAA ATA GCC ATC ATC T-3'; amplicon length: 345 bp, PCR cycle: 25. RT-PCR conditions were the same as those for the above genes.

Results

Characteristics of small-cell lung carcinoma xenografts

Six human SCLC xenografts were included in the study: three were derived from primary tumor sites and three were derived from metastases. Xenografts were histologically defined either as oat cells or variant cell types, as shown in Table 1. Three SCLC xenografts were obtained from patients before treatment and three were derived from patients who were treated earlier with etoposide and cisplatin combination plus radiotherapy. The patient's survival time ranged between 8 weeks and 30 months. The *p53* gene was inactivated in all cases by deletions or mutations. Finally, the in-vivo tumor growth of transplanted xenografts differed with a doubling time ranging between 3 and 6 days (data not shown).

Antitumor efficacy of single-agent topotecan chemotherapy

The efficacy of i.p. administration of TPT was tested as single-agent therapy on the various SCLC xenografts at dosages of 0.5, 1, 1.5, and 2 mg/kg/day for 5 days. As shown in Table 2, tumor GDI and optimal TGI were dose-dependent. Three xenografts (SCLC-61, SCLC-101, and SCLC-96) showed GDI greater than 2 and TGI $\geq 90\%$ for all four dosages tested, two xenografts (SCLC-108 and SCLC-74) showed significant GDI (>2) and TGI ($>80\%$) at higher dosages of TPT, and one xenograft (SCLC-6) showed a maximum GDI of 2 and a maximum TGI of 65% at the highest dose of TPT. Inversely, and despite high GDI and TGI, CR rates ranged between 0 and 33% in all xenografts tested with a

Table 1 Clinical and biological features of the six human SCLC xenografts

Tumor xenograft	Histology	Human origin	Patient treatment before graft	Patient survival ^a	<i>p53</i> status (altered codon)
SCLC-61	Oat cell	Primary	No	L	Mutated (175)
SCLC-6	Variant	Lymph node	No	L	Mutated (283)
SCLC-74	Variant	Lymph node	Yes	S	Deletion (175)
SCLC-101	Oat cell	Primary	Yes	I	Mutated (204)
SCLC-96	Variant	Primary	No	S	Mutated (163)
SCLC-108	Variant	Skin metastasis	Yes	S	Mutated (159)

SCLC, small-cell lung carcinoma.

^aI, intermediate, 4–12 months; L, long, up to 30 months; S, short, <4 months.

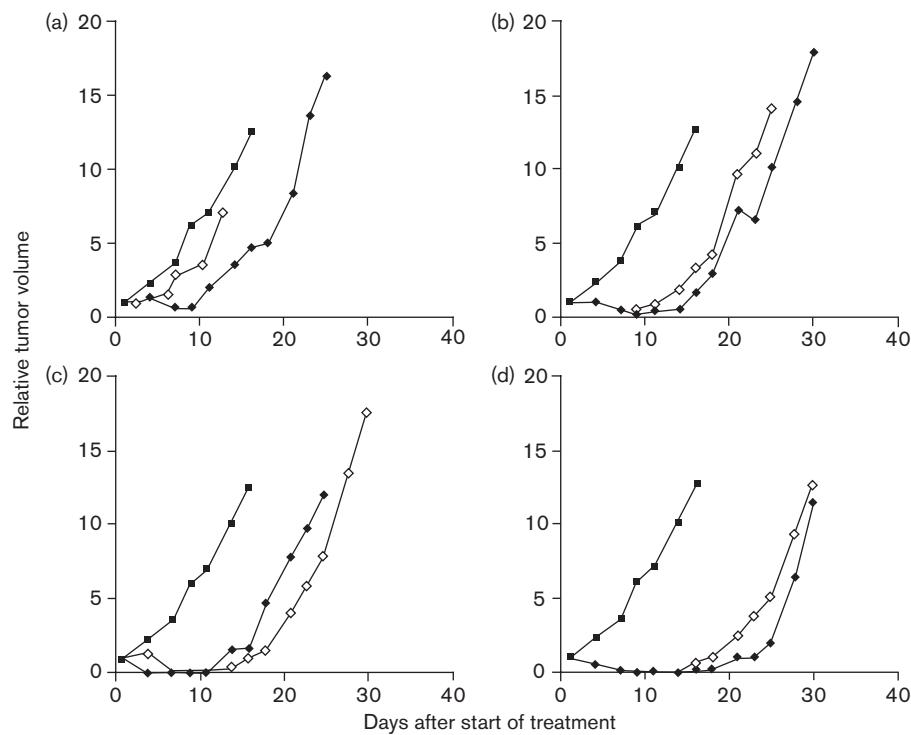
Table 2 Response of SCLC xenografts to various doses of single-agent TPT

Tumor xenograft	TPT (mg/kg/day) ^a	Growth delay index (days) ^b	Growth inhibition (%) ^c	No. of complete regressions/group	Duration of complete regressions (days) ^c
SCLC-61	0.5	2	93	0/3	–
	1	2.3	92	0/5	–
	1.5	2.6	98	1/6	7
	2	2.3	98	1/5	2
SCLC-6	0.5	1.1	45	0/5	–
	1	1.2	52	0/6	–
	1.5	1	58	0/5	–
	2	2	65	0/5	–
SCLC-74	0.5	1.6	57	0/6	–
	1	2	89	0/8	–
	1.5	1.9	84	0/5	–
	2	3	90	0/7	–
SCLC-101	1	2.3	90	1/5	2
	1.5	3.1	94	0/5	–
SCLC-96	0.5	2.7	95	1/5	9
	1	3.3	98	1/4	10
	2	4.1	98	1/4	11
	0.5	1.8	80	0/6	–
SCLC-108	1	2.8	94	0/6	–
	1.5	3.4	97	1/6	9
	2	3.9	99	2/6	16

SCLC, small-cell lung carcinoma; TPT, topotecan.

^aTPT was given intraperitoneally at doses of 0.5–2 mg/kg/day, days 1–5.

^bGrowth delay index was calculated as the ratio between the median growth delay in treated mice and in control mice, as described in the Materials and methods.


^cExpressed as the median value.

CR duration ranging between 2 and 16 days. Oral and i.p. administration of four doses, 0.5, 1, 1.5, and 2 mg/kg, of TPT (Fig. 1) were compared in the highly sensitive SCLC-61 xenograft and no difference was observed between the two routes of administration. Finally, TPT was well tolerated, as only one of the seven mice showed a weight loss greater than 10% at a dosage of 2 mg/kg/day.

Antitumor efficacy of topotecan-based chemotherapy

To define the most effective drug combinations, TPT was combined with etoposide, ifosfamide, or cisplatin in the five human SCLC models SCLC-61/6/74/101/108. As in our earlier experiments, TPT was administered by i.p. injection at four different dosages, 0.5, 1, 1.5, or 2 mg/kg/day. Mice bearing each SCLC xenograft were treated by etoposide, ifosfamide, or cisplatin alone, and by the triple combination of these drugs (VIP), considered as standard treatment. As shown in Table 3, all models, apart from SCLC-74 and SCLC-108, were very sensitive to the VIP regimen with an optimal TGI ranging between 98 and 100%, an optimal GDI ranging between 3.1 and 10, but a CR rate ranging between 0 and 100%. For all SCLC xenografts expressing primary resistance to etoposide (SCLC-6 and SCLC-74), ifosfamide (SCLC-74), or cisplatin (SCLC-74) administered alone, concomitant administration of TPT induced a significant TGI and GDI (Fig. 2). However, a significant increase of the CR rate was only observed with the ifosfamide and TPT combination. Finally, combinations of

Fig. 1

Effect of single-agent topotecan (TPT) administered orally or intraperitoneally to mice bearing small-cell lung carcinomas (SCLC)-61 xenografts. TPT was administered orally (◇) or intraperitoneally (◆) at dosage of 1 (a), 1.5 (b), 2 (c), or 2.5 (d) mg/kg/day on days 1–5. Control group (■) received 0.2 ml of the drug-formulating vehicle with the same schedule as the treated animals.

Table 3 Response of SCLC xenografts to TPT, VP16, IFO, and CDDP as single agents and in combination with TPT

Topotecan ^b (mg/kg/day, days 1–5)	VIP ^a		Etoposide				Ifosfamide				Cisplatin	
	0	0	0.5	1	1.5	0	0.5 ^c	1	1.5	0	0.5	
SCLC-61	TGI ^d	100	100	nd	100	100	99	nd	nd	75	nd	
	GDI ^d	10	2.9	nd	>19	6	3.3	3.5	nd	nd	2	nd
	CR ^f	3/3	3/5	nd	7/8	8/8	7/7	2/4	nd	nd	0/5	nd
SCLC-6	TGI	98	48	nd	63	nd	79	87	90	100	76	nd
	GDI	4.7	1.6	nd	2.4	nd	2	5	5	6	1.3	nd
	CR	0/8	0/7	nd	1/6	nd	0/7	2/7	0/8	4/6	2/5	nd
SCLC-74	TGI	70	49	nd	nd	88	29	81	91	nd	0	87
	GDI	1.8	1	nd	nd	2	0.9	2	2.3	nd	0.8	2
	CR	0/6	0/8	nd	nd	0/5	0/7	0/7	0/6	nd	0/8	0/5
SCLC-101	TGI	99	50	nd	nd	nd	80	nd	100	100	65	nd
	GDI	3.1	1.1	nd	nd	nd	2.2	nd	4.9	5.5	1.5	nd
	CR	3/8	0/6	nd	nd	nd	0/5	nd	7/11	7/11	0/5	nd
SCLC-108	TGI	52	nd	75	nd	nd	nd	77	nd	nd	nd	77
	GDI	1.5	nd	1.6	nd	nd	nd	1.9	nd	nd	nd	1.9
	CR	0/6	nd	0/7	nd	nd	0/7	nd	nd	nd	nd	0/8

CR, complete regression; GDI, growth delay index; nd, not done; SCLC, small-cell lung carcinoma; TGI, tumor growth inhibition; TPT, topotecan; VIP, etoposide/ifosfamide/cisplatin combination.

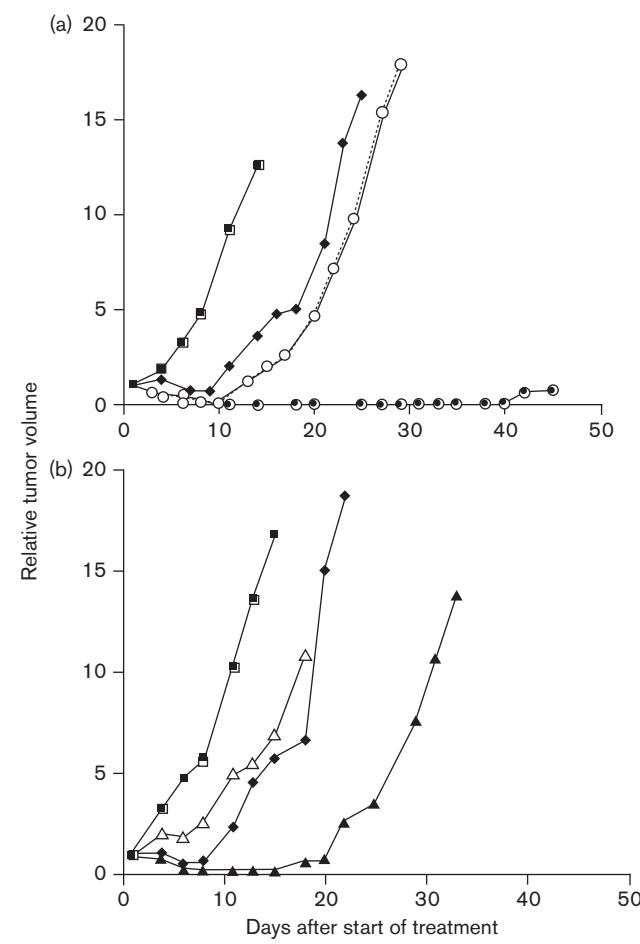
^aVP16 (etoposide) was administered at a dosage of 12 mg/kg/day, days 1–3; IFO (ifosfamide) was administered at 90 mg/kg/day, days 1–3; CDDP (cisplatin) was administered at a dosage of 6 mg/kg/day, day 1.

^bTPT was given at dose from 0.5 to 1.5 mg/kg/day, days 1–5.

^cOptimal TGI calculated from the curves of median tumor growth at the optimal antitumor effect and expressed as the median value; in parentheses, number of complete regressions per group.

^dIndex of GDI calculated as the ratio between the median growth delay in treated mice and control mice.

^eIfosfamide was administered at a dose of 30 mg/kg/day on days 1–3.


^fNumber of CR per total number of mice per group.

TPT with etoposide or ifosfamide seemed to be as effective as the VIP regimen, suggesting that cisplatin-related toxicities could be avoided without loss of therapeutic efficacy. The TPT and cisplatin combination was very toxic leading to the death of all treated mice.

Expression of different drug resistance genes

Semiquantitative RT-PCR was used to analyze the expression of various genes involved in drug resistance. Total RNA was isolated from the six human SCLC xenografts. The relative expression of the genes of interest was calculated within the linear amplification range and determined with respect to the internal standard β 2-microglobulin (β 2m) gene (Table 4). Expression of

Fig. 2

Effects of topotecan (TPT) single-agent therapy or in combination with etoposide (a) or ifosfamide (b) in mice bearing small-cell lung carcinomas (SCLC)-61 xenografts. (a) TPT alone was administered at a dosage of 1 mg/kg/day days 1–5 (◆), etoposide alone was administered at a dosage of 12 mg/kg/day days 1–3 (○), and TPT was administered in combination with etoposide (●). (b) TPT alone was administered at a dosage of 0.5 mg/kg/day, days 1–5 (◆), ifosfamide alone was administered at a dosage of 30 mg/kg/day days 1–3 (△), and TPT was administered in combination with ifosfamide (▲). Control group (■) received 0.2 ml of the drug-formulating vehicle with the same schedule as the treated animals.

Table 4 Relative expression of chemoresistance-related genes of SCLC xenografts

Tumor xenograft	Topo I	Topo II α	MDR1	MRP	LRP	GST π
SCLC-61	0.57	1.03	0.37	5.59	0.00	3.38
SCLC-6	1.24	1.22	0.08	2.38	0.15	0.88
SCLC-74	0.50	0.19	0.00	1.84	2.83	1.64
SCLC-101	0.27	0.08	0.00	1.57	0.36	1.24
SCLC-96	0.09	0.69	0.00	1.9	0.54	0.00
SCLC-108	0.28	0.31	0.19	1.05	0.53	0.65

GST π , glutathione S-transferase π ; LRP, lung resistance-related protein; MDR1, multidrug resistance 1; MRP, multidrug resistance-associated protein; SCLC, small-cell lung carcinoma; Topo I, topoisomerase I; Topo II α , topoisomerase II α .

Topo I, the target of TPT, was detected in all xenografts tested, but at different levels ranging between 0.09 (SCLC-96) and 1.24 (SCLC-6). Expression of Topo II α , the pharmacological target of etoposide, differed in all tumors with relative gene expression varying between 0.08 (SCLC-101) and 1.22 (SCLC-6); this level of expression did not explain the difference of in-vivo efficacy of etoposide single-agent therapy, as SCLC-61 and SCLC-6 expressed high levels, but their DGI were 100 and 48%, respectively. MDR1 was expressed in three xenografts (SCLC-61/SCLC-6/SCLC-108) and absent in the other three tumors. MRP was expressed in all tumors and the highest level was detected in SCLC-61. LRP was expressed in all SCLC xenografts except for SCLC-61. Finally, GST π was expressed at different levels in all SCLC xenografts except for SCLC-96. No significant correlation was established between the relative expression of the various genes studied and the in-vivo response to TPT single-agent therapy.

Discussion

Prediction of human tumor response from preclinical data could reduce failure rates of clinical development of new anticancer drugs. The crucial question is therefore to define whether established preclinical models, that is, xenografts, retain the characteristics of the human tumors from which they are derived. To address this issue, we have developed a panel of six SCLC xenografts derived directly from patient tumors, which has already been used for preclinical studies using various chemotherapy regimens, such as CCAV (cyclophosphamide, cisplatin, doxorubicin, and etoposide), and VIP (etoposide, ifosfamide, and cisplatin) [21–24]. The aims of this study were therefore to evaluate the therapeutic relevance of this panel of human SCLC xenografts, using TPT, and to analyze the tumor molecular profile according to genes putatively involved in the response to TPT-based chemotherapy.

In this study, three xenografts (SCLC-61, SCLC-101, and SCLC-96) showed TGI $\geq 90\%$ at all four dosages of TPT tested alone, two xenografts (SCLC-108 and SCLC-74) showed significant TGI ($> 80\%$) at higher dosages of TPT alone, and one xenograft (SCLC-6) showed a maximum TGI of 65% at the highest dose of

TPT alone. Clinical phase II studies have shown that TPT given for 5 consecutive days at a dose of 1.5 mg/m²/day intravenously (i.v.) is active in patients with recurrent SCLC. Three phase II studies of single-agent i.v. TPT have shown response rates of 14–38% among sensitive patients with response rates of 2–6% among refractory patients. Median survival time was 26–28 weeks for sensitive patients compared with 16–20 weeks for refractory patients [12–14]. Furthermore, a phase III randomized study in patients with relapsed sensitive SCLC showed that outcomes with TPT were at least as good as those with CAV regimen [17].

Oral and i.p. administration of four doses of TPT (0.5, 1, 1.5, and 2 mg/kg) were compared in the highly sensitive SCLC-61 xenograft and no difference was observed between the two routes of administration. An oral formulation of TPT showed similar efficacy to the i.v. formulation in patients with relapsed SCLC [15,25]. In a phase III study of patients with relapsed sensitive SCLC, response rates with oral and i.v. TPT were 18.3% and 21.9%, respectively [25].

In this study, TPT was well tolerated. The predominant toxicity in TPT-treated patients was hematologic, principally noncumulative, reversible neutropenia. Non-hematologic toxicities were generally grade 1 or 2, and the subjective tolerability of TPT was good. TPT has an incomplete, overlapping toxicity profile with other agents used in the treatment of SCLC. Reversible, nonoverlapping, nonhematologic toxicities and in-vitro antitumor synergy with platinum agents, taxanes, and Topo II inhibitors may make TPT an ideal candidate for use in combination with other chemotherapy agents [26–28]. Therefore, to improve its efficacy, TPT has been combined with other chemotherapies, including etoposide, ifosfamide, and cisplatin [29–32]. In the experiments reported here, the efficacy of TPT was improved by combination with ifosfamide (SCLC-6, SCLC-61, and SCLC-101) or etoposide (SCLC-6 and SCLC-61). Moreover, in VIP-refractory xenografts (SCLC-74 and SCLC-108), etoposide improved the efficacy of TPT. Administration of TPT before etoposide was found to be more effective, possibly by increasing Topo II α levels [29,33]. This would lead to increased sensitivity of tumors to subsequent treatment with etoposide, as also shown by Saraiya and colleagues [34]. Combinations of TPT and etoposide or ifosfamide also seemed to be as effective as the VIP regimen, suggesting that cisplatin-related toxicities could be avoided without decreasing therapeutic efficacy.

The cisplatin and TPT combination would be a useful option in the treatment of SCLC because of the nonoverlapping toxicities of these agents and the potential for TPT to prevent repair of platinum DNA adducts. *In vitro*, CDDP is known to induce interstrand and intrastrand DNA adducts, such as a poisoning of the Topo I. Combined with TPT, this mechanism could be

exacerbated [35]. Moreover, Van Waardenburg *et al.* [35] have shown that the in-vivo persistence of cisplatin–DNA adducts correlated with increased covalent Topo I–DNA complexes that might increase the sensitivity to TPT. Data from phase II studies of TPT with cisplatin as first-line therapy for ED-SCLC indicate efficacy in this setting, with response rates of 60–63% and median survival of 8.0–9.6 months [36,37]. However, in this study, the CDDP with TPT combination did not improve the efficacy of TPT. Furthermore, the TPT and cisplatin combination was very toxic with the death of all treated mice. Earlier studies have shown that hematologic toxicity with TPT/CDDP is sequence-dependent, and that toxicity is reduced when cisplatin is given on day 5 of TPT treatment instead of day 1, as in this study [38–40]. Owing to its toxicity, the TPT and cisplatin combination required low dosages of TPT, inducing similar efficacy of both TPT–CDDP and etoposide–TPT in SCLC-74 and SCLC-108 xenografts, similar to the results observed in clinical trials (63% for TPT/CDDP vs. 61 or 69% for TPT/VP16) [36,41,42]. However, cisplatin slightly increased the response to TPT–CDDP in SCLC-74 but not in SCLC-108, as compared with TPT alone. This observation could be explained by the higher content of GST π and related enzymes in these tumors [43,44]. In a randomized phase III trial, the combination of oral TPT and cisplatin was compared with the standard etoposide–cisplatin regimen in previously untreated patients with ED-SCLC. Oral TPT with cisplatin provided similar efficacy and tolerability to the standard regimen (etoposide with cisplatin) in untreated ED-SCLC and may provide greater patient convenience compared with i.v. etoposide and cisplatin [41].

Study of the expression of various genes involved in the response to camptothecin analogs showed that Topo I expression was the most important. Earlier reports have also suggested that the sensitivity of cells to TPT might be because of decreased accumulation of the drug in cells, but independently of the P-glycoprotein-mediated MDR and MRP. Breast cancer resistance protein (BCRP) has also been shown to play a role in intracellular drug accumulation [45–48]. However, no significant correlation between relative expression of the various genes studied and the in-vivo response to TPT administered alone or in combination was observed in our xenografts.

In conclusion, this panel of SCLC established xenografts seems to be very representative of human SCLC disease in terms of histology and drug response, confirming their value for preclinical assessment of new drugs or new drug combinations.

Acknowledgements

The authors thank GlaxoSmithKline (Nanterre, France) for providing TPT and are grateful to Vincent Bordier and Christophe Alberti for their excellent technical assistance.

The authors thank Professor Thierry Soussi, Université P. M. Curie, Paris VI, France for p53 analyses.

References

- 1 Jackman DM, Johnson BE. Small-cell lung cancer. *Lancet* 2005; **366**:1385–1396.
- 2 Simon GR, Wagner H. Small cell lung cancer. *Chest* 2003; **123**:259S–271S.
- 3 Mascaux C, Paesmans M, Berghmans T, Branle F, Lafitte JJ, Lemaitre F, et al. A systematic review of the role of etoposide and cisplatin in the chemotherapy of small cell lung cancer with methodology assessment and meta-analysis. *Lung Cancer* 2000; **30**:23–36.
- 4 Pommier Y. Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins. *Semin Oncol* 1996; **23**:3–10.
- 5 Pommier Y, Pourquier P, Fan Y, Strumberg D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. *Biochim Biophys Acta* 1998; **1400**:83–105.
- 6 Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. *Nat Rev Cancer* 2006; **6**:789–802.
- 7 Slichenmyer WJ, Rowinsky EK, Donehower RC, Kaufmann SH. The current status of camptothecin analogues as antitumor agents. *J Natl Cancer Inst* 1993; **85**:271–291.
- 8 Puppo M, Battaglia F, Ottaviano C, Delfino S, Ribatti D, Varesio L, et al. Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1alpha and -2alpha. *Mol Cancer Ther* 2008; **7**:1974–1984.
- 9 Clements M, Jones C, Cumming M, Daoud S. Antiangiogenic potential of camptothecin and topotecan. *Cancer Chemother Pharmacol* 1999; **44**:411–416.
- 10 Beppu K, Nakamura K, Linehan WM, Rapisarda A, Thiele CJ. Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. *Cancer Res* 2005; **65**:4775–4781.
- 11 Lund EL, Hansen LT, Kristjansen PE. Augmenting tumor sensitivity to topotecan by transient hypoxia. *Cancer Chemother Pharmacol* 2005; **56**:473–480.
- 12 Ardizzone A, Hansen H, Dombernowsky P, Gamucci T, Kaplan S, Postmus P, et al. Topotecan, a new active drug in the second-line treatment of small-cell lung cancer: a phase II study in patients with refractory and sensitive disease. The European Organization for Research and Treatment of Cancer Early Clinical Studies Group and New Drug Development Office, and the Lung Cancer Cooperative Group. *J Clin Oncol* 1997; **15**:2090–2096.
- 13 Eckardt J, Gralla RJ, Palmer MC, Gandara D, Laplante J, Sandler A, et al. Topotecan as second-line therapy in patients with small cell lung cancer (SCLC): a phase II study. *Ann Oncol* 1996; **7**:107a.
- 14 Depierre A, von Pawel J, Hans K, Moro D, Clark P, Gatzemeier U, et al. Evaluation of topotecan in relapsed small cell lung cancer. A multicentre phase II study [abstract]. *Lung Cancer* 1997; **18**:35.
- 15 Von Pawel J, Gatzemeier U, Pujol JL, Moreau L, Bildat S, Ranson M, et al. Phase II comparator study of oral versus intravenous topotecan in patients with chemosensitive small-cell lung cancer. *J Clin Oncol* 2001; **19**:1743–1749.
- 16 O'Brien ME, Ciuleanu TE, Tsekov H, Shparyk Y, Cucevici B, Juhaz G, et al. Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. *J Clin Oncol* 2006; **24**:5441–5447.
- 17 Von Pawel J, Schiller JH, Shepherd FA, Fields SZ, Kleisbauer JP, Chrysson NG, et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. *J Clin Oncol* 1999; **17**:658–667.
- 18 Eckardt JR, von Pawel J, Pujol JL, Papai Z, Quoix E, Ardizzone A, et al. Phase III study of oral compared with intravenous topotecan as second-line therapy in small-cell lung cancer. *J Clin Oncol* 2007; **25**:2086–2092.
- 19 Ardizzone A. Topotecan in the treatment of recurrent small cell lung cancer: an update. *Oncologist* 2004; **9** (Suppl 6):4–13.
- 20 Houghton PJ, Cheshire PJ, Hallman JD II, Lutz L, Friedman HS, Danks MK, et al. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. *Cancer Chemother Pharmacol* 1995; **36**:393–403.
- 21 Némati F, Livartowski A, De CP, Bourgeois Y, Arvelo F, Pouillart P, et al. Distinctive potentiating effects of cisplatin and/or ifosfamide combined with etoposide in human small cell lung carcinoma xenografts. *Clin Cancer Res* 2000; **6**:2075–2086.
- 22 Poupon M, Arvelo F, Goguel A, Bourgeois Y, Jacrot M, Hanania N, et al. Response of small-cell lung cancer xenografts to chemotherapy: multidrug resistance and direct clinical correlates. *J Natl Cancer Inst* 1993; **85**:2023–2029.
- 23 Arvelo F, Poupon M, Goguel A, Lizard G, Bourgeois Y, Arriagada R, et al. Response of a multidrug-resistant human small-cell lung cancer xenograft to chemotherapy. *J Cancer Res Clin Oncol* 1993; **120**:17–23.
- 24 Arvelo F, Poupon M, Le CT. Establishment and characterization of five human small cell lung cancer cell lines from early tumor xenografts. *Anticancer Res* 1994; **14**:1893–1901.
- 25 Gralla RJ, Eckardt J, Grotzinger KM. Quality of life with single agent oral topotecan versus intravenous TPT in patients with chemosensitive small cell lung cancer (SCLC): an international phase III study. *Lung Cancer* 2003; **41**:S23.
- 26 Bahadırı HR, Green MR, Catapano CV. Synergistic interaction between topotecan and microtubule-interfering agents. *Cancer Chemother Pharmacol* 2001; **48**:188–196.
- 27 Jonsson E, Fridborg H, Nygren P, Larsson R. Synergistic interactions of combinations of topotecan with standard drugs in primary cultures of human tumor cells from patients. *Eur J Clin Pharmacol* 1998; **54**:509–514.
- 28 Nagourney RA, Sommers BL, Harper SM, Radecki S, Evans SS. Ex vivo analysis of topotecan: advancing the application of laboratory-based clinical therapeutics. *Br J Cancer* 2003; **89**:1789–1795.
- 29 Whitacre C, Zborowska E, Gordon N, Mackay W, Berger N. Topotecan increases topoisomerase I α levels and sensitivity to treatment with etoposide in schedule-dependent process. *Cancer Res* 1997; **57**:1425–1428.
- 30 Kaufmann S, Peereboom D, Buckwalter C, Svingen P, Grochow L, Donehower R, et al. Cytotoxic effects of topotecan combined with various anticancer agents in human cancer cell lines [see comments]. *J Natl Cancer Inst* 1996; **88**:734–741.
- 31 Jensen P, Holm B, Sorensen M, Christensen I, Sehested M. In vitro cross-resistance and collateral sensitivity in seven resistant small-cell lung cancer cell lines: preclinical identification of suitable drug partners to taxotere, taxol, topotecan and gemcitabine. *Br J Cancer* 1997; **75**:869–877.
- 32 Bonner J, Kozelsky T. The significance of the sequence of administration of topotecan and etoposide. *Cancer Chemother Pharmacol* 1996; **39**:109–112.
- 33 Ciuleanu TE, Curca R, Iancu D, Todor N, Cebotaru C, Radulescu I, et al. First-line chemotherapy with topotecan and etoposide in advanced small cell lung cancer. A phase II study. *J BUON* 2002; **7**:43–46.
- 34 Saraiya B, Gounder M, Dutta J, Saleem A, Collazo C, Zimmerman L, et al. Sequential topoisomerase targeting and analysis of mechanisms of resistance to topotecan in patients with acute myelogenous leukemia. *Anticancer Drugs* 2008; **19**:411–420.
- 35 Van Waardenburg RC, de Jong LA, van Eijndhoven MA, Verseyden C, Pluim D, Jansen LE, et al. Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. *J Biol Chem* 2004; **279**:54502–54509.
- 36 Quoix E, Breton JL, Gervais R, Wilson J, Schramel F, Cardenal F, et al. A randomised phase II study of the efficacy and safety of intravenous topotecan in combination with either cisplatin or etoposide in patients with untreated extensive disease small-cell lung cancer. *Lung Cancer* 2005; **49**:253–261.
- 37 Seifart U, Jensen K, Ukena J, Mueller C, Schroder M, Fuhr HG, et al. Randomized phase II study comparing topotecan/cisplatin administration for 5 days Versus 3 days in the treatment of extensive stage small cell lung cancer (SCLC). *Lung Cancer* 2005; **48**:415–422.
- 38 Lyss AP, Herndon JE II, Lynch TJ Jr, Turrisi AT, Watson DM, Grethlein SJ, et al. Novel doublets in extensive-stage small-cell lung cancer: a randomized phase II study of topotecan plus cisplatin or paclitaxel (CALGB 9430). *Clin Lung Cancer* 2002; **3**:205–210; discussion 211–212.
- 39 Rowinsky EK, Kaufmann SH, Baker SD, Grochow LB, Chen TL, Peereboom D, et al. Sequences of topotecan and cisplatin: phase I, pharmacologic, and in vitro studies to examine sequence dependence. *J Clin Oncol* 1996; **14**:3074–3084.
- 40 Sorensen M, Jensen PB, Herrstedt J, Hirsch FR, Hansen HH. A dose escalating study of topotecan preceding cisplatin in previously untreated patients with small-cell lung cancer. *Ann Oncol* 2000; **11**:829–835.
- 41 Eckardt JR, von Pawel J, Papai Z, Tomova A, Tzekova V, Crofts TE, et al. Open-label, multicenter, randomized, phase III study comparing oral topotecan/cisplatin versus etoposide/cisplatin as treatment for chemotherapy-naïve patients with extensive-disease small-cell lung cancer. *J Clin Oncol* 2006; **24**:2044–2051.

42 Fischer B, Arcaro A. Current status of clinical trials for small cell lung cancer. *Rev Recent Clin Trials* 2008; **3**:40–61.

43 Hao X, Widersten M, Ridderstrom M, Hellman U, Mannervik B. Co-variation of glutathione transferase expression and cytostatic drug resistance in HeLa cells: establishment of class Mu glutathione transferase M3–3 as the dominating isoenzyme. *Biochem J* 1994; **297**:59–67.

44 Sharma R, Singhal S, Srivastava S, Bajpai K, Frenkel E, Awasthi S. Glutathione and glutathione linked enzymes in human small cell lung cancer cell lines. *Cancer Lett* 1993; **75**:111–119.

45 Ma J, Maliepaard M, Nooter K, Loos W, Kolker H, Verweij J, et al. Reduced cellular accumulation of topotecan: a novel mechanism of resistance in a human ovarian cancer cell line. *Br J Cancer* 1998; **77**:1645–1652.

46 Emerson D, Besterman J, Brown H, Evans M, Leitner P, Luzzio M, et al. In vivo antitumor activity of two new seven-substituted water-soluble camptothecin analogues. *Cancer Res* 1995; **55**:603–609.

47 Marchetti S, Oostendorp RL, Pluim D, van Eijndhoven M, van Tellingen O, Schinkel AH, et al. In vitro transport of gimatecan (7-t-butoxyiminomethylcamptothecin) by breast cancer resistance protein, P-glycoprotein, and multidrug resistance protein 2. *Mol Cancer Ther* 2007; **6**:3307–3313.

48 Gounder MK, Nazar AS, Saleem A, Pungaliya P, Kulkarni D, Versace R, et al. Effects of drug efflux proteins and topoisomerase I mutations on the camptothecin analogue gimatecan. *Invest New Drugs* 2008; **26**: 205–213.